Part Number Hot Search : 
BPC350 FRV05 CM1305 P4KE24 HD1105G 60N03 MB90650A GBU8M
Product Description
Full Text Search
 

To Download MPS3904 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by MPS3904/D
General Purpose Transistor
NPN Silicon
COLLECTOR 3 2 BASE 1 EMITTER
MPS3904
MAXIMUM RATINGS
Rating Collector - Emitter Voltage Collector - Base Voltage Emitter - Base Voltage Collector Current -- Continuous Total Device Dissipation @ TA = 25C Derate above 25C Total Power Dissipation @ TA = 60C Total Device Dissipation @ TC = 25C Derate above 25C Operating and Storage Junction Temperature Range Symbol VCEO VCBO VEBO IC PD PD PD TJ, Tstg Value 40 60 6.0 100 625 5.0 450 1.5 12 - 55 to +150 Unit Vdc Vdc Vdc mAdc mW mW/C mW Watts mW/C C
1 2 3
CASE 29-04, STYLE 1 TO-92 (TO-226AA)
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Ambient Thermal Resistance, Junction to Case Symbol RqJA RqJC Max 200 83.3 Unit C/W C/W
ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted)
Characteristic Symbol Min Max Unit
OFF CHARACTERISTICS
Collector - Emitter Breakdown Voltage(1) (IC = 1.0 mAdc, IB = 0) Collector - Base Breakdown Voltage (IC = 10 Adc, IE = 0) Emitter - Base Breakdown Voltage (IE = 10 Adc, IC = 0) Collector Cutoff Current (VCE = 30 Vdc, VEB(off) = 3.0 Vdc) Base Cutoff Current (VCE = 30 Vdc, VEB(off) = 3.0 Vdc) 1. Pulse Test: Pulse Width 300 ms, Duty Cycle 2.0%. V(BR)CEO V(BR)CBO V(BR)EBO ICEX IBL 40 60 6.0 -- -- -- -- -- 50 50 Vdc Vdc Vdc nAdc nAdc
REV 1
Motorola Small-Signal Transistors, FETs and Diodes Device Data (c) Motorola, Inc. 1997
1
MPS3904
ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) (Continued)
Characteristic Symbol Min Max Unit
ON CHARACTERISTICS(1)
DC Current Gain (IC = 0.1 mAdc, VCE = 1.0 Vdc) (IC = 1.0 mAdc, VCE = 1.0 Vdc) (IC = 10 mAdc, VCE = 1.0 Vdc) (IC = 50 mAdc, VCE = 1.0 Vdc) (IC = 100 mAdc, VCE = 1.0 Vdc) Collector - Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc) Base - Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc) hFE 40 70 100 60 30 VCE(sat) -- -- VBE(sat) 0.65 -- 0.85 1.1 0.2 0.3 Vdc -- -- 300 -- -- Vdc --
SMALL- SIGNAL CHARACTERISTICS
Current - Gain -- Bandwidth Product (IC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz) Output Capacitance (VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz) Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) Input Impedance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) Voltage Feedback Ratio (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) Output Admittance (IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz) Noise Figure (IC = 100 Adc, VCE = 5.0 Vdc, RS = 1.0 k, f = 1.0 kHz) fT Cobo Cibo hie hre hfe hoe NF 300 -- -- 1.0 0.5 100 1.0 -- -- 4.0 8.0 10 8.0 400 40 5.0 MHz pF pF k X 10-4 -- mhos dB
SWITCHING CHARACTERISTICS
Delay Time Rise Time Storage Time Fall Time ( (VCC = 3.0 Vdc, VBE(off) = - 0.5 Vdc, , , IC = 10 mAdc, IB1 = 1.0 mAdc) ( (VCC = 3.0 Vdc, IC = 10 mAdc, , , IB1 = IB2 = 1.0 mAdc) td tr ts tf -- -- -- -- 35 50 900 90 ns ns ns ns
1. Pulse Test: Pulse Width 300 ms, Duty Cycle 2.0%.
EQUIVALENT SWITCHING TIME TEST CIRCUITS
+ 3.0 V 300 ns DUTY CYCLE = 2% - 0.5 V <1.0 ns +10.9 V 10 k 0 CS < 4.0 pF* - 9.1 V < 1.0 ns 1N916 CS < 4.0 pF* 275 + 3.0 V t1 +10.9 V 10 k 275
10 < t1 < 500 s DUTY CYCLE = 2%
*Total shunt capacitance of test jig and connectors
Figure 1. Turn-On Time
Figure 2. Turn-Off Time
2
Motorola Small-Signal Transistors, FETs and Diodes Device Data
MPS3904
TYPICAL NOISE CHARACTERISTICS
(VCE = 5.0 Vdc, TA = 25C)
20 IC = 1.0 mA en, NOISE VOLTAGE (nV) 300 A BANDWIDTH = 1.0 Hz RS = 0 In, NOISE CURRENT (pA) 100 50 20 10 5.0 2.0 1.0 0.5 0.2 2.0 10 20 50 100 200 500 1 k f, FREQUENCY (Hz) 2k 5k 10 k 0.1 10 20 50 100 200 500 1 k f, FREQUENCY (Hz) 2k 5k 10 k 30 A 10 A IC = 1.0 mA 300 A 100 A BANDWIDTH = 1.0 Hz RS
10 7.0 5.0 10 A 3.0
100 A
30 A
Figure 3. Noise Voltage
Figure 4. Noise Current
NOISE FIGURE CONTOURS
(VCE = 5.0 Vdc, TA = 25C)
500 k RS , SOURCE RESISTANCE (OHMS) RS , SOURCE RESISTANCE (OHMS) 200 k 100 k 50 k 20 k 10 k 5k 2k 1k 500 200 100 50 10 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (A) 500 700 1k BANDWIDTH = 1.0 Hz 1M 500 k 200 k 100 k 50 k 20 k 10 k 5k 2k 1k 500 200 100 10 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (A)
BANDWIDTH = 1.0 Hz
2.0 dB 3.0 dB 4.0 dB 6.0 dB 10 dB
1.0 dB 2.0 dB 3.0 dB 5.0 dB 8.0 dB 500 700 1k
Figure 5. Narrow Band, 100 Hz
Figure 6. Narrow Band, 1.0 kHz
500 k RS , SOURCE RESISTANCE (OHMS) 200 k 100 k 50 k 20 k 10 k 5k 2k 1k 500 200 100 50 10 20 30 50 70 100
10 Hz to 15.7 kHz
Noise Figure is defined as: NF
1.0 dB 2.0 dB 3.0 dB 5.0 dB 8.0 dB 200 300 500 700 1k
4KTRS en = Noise Voltage of the Transistor referred to the input. (Figure 3) In = Noise Current of the Transistor referred to the input. (Figure 4) K = Boltzman's Constant (1.38 x 10-23 j/K) T = Temperature of the Source Resistance (K) RS = Source Resistance (Ohms)
+ 20 log10
en2
) 4KTRS ) In 2RS2 1 2
IC, COLLECTOR CURRENT (A)
Figure 7. Wideband Motorola Small-Signal Transistors, FETs and Diodes Device Data 3
MPS3904
TYPICAL STATIC CHARACTERISTICS
400
TJ = 125C
h FE, DC CURRENT GAIN
200
25C
- 55C 100 80 60 40 0.004 0.006 0.01 MPS3904 VCE = 1.0 V VCE = 10 V 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 IC, COLLECTOR CURRENT (mA) 3.0 5.0 7.0 10 20 30 50 70 100
Figure 8. DC Current Gain
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
1.0 IC, COLLECTOR CURRENT (mA) MPS3904 TJ = 25C
100
0.8 IC = 1.0 mA 10 mA 50 mA
TA = 25C PULSE WIDTH = 300 s 80 DUTY CYCLE 2.0%
IB = 500 A 400 A 300 A
0.6
100 mA
60 200 A 40 100 A 20
0.4
0.2
0 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 IB, BASE CURRENT (mA)
0 5.0 10 20 0 5.0 10 15 20 25 30 35 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 40
Figure 9. Collector Saturation Region
Figure 10. Collector Characteristics
TJ = 25C 1.2 V, VOLTAGE (VOLTS) 1.0 0.8 0.6 VBE(on) @ VCE = 1.0 V 0.4 0.2 VCE(sat) @ IC/IB = 10 0 0.1 0.2 2.0 5.0 10 20 0.5 1.0 IC, COLLECTOR CURRENT (mA) 50 100 VBE(sat) @ IC/IB = 10
V, TEMPERATURE COEFFICIENTS (mV/C)
1.4
1.6 0.8
*APPLIES for IC/IB hFE/2 25C to 125C
0
*qVC for VCE(sat) - 55C to 25C
- 0.8 25C to 125C - 1.6
qVB for VBE
- 2.4 0.1 0.2
- 55C to 25C 50 100
0.5 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA)
Figure 11. "On" Voltages
Figure 12. Temperature Coefficients
4
Motorola Small-Signal Transistors, FETs and Diodes Device Data
MPS3904
TYPICAL DYNAMIC CHARACTERISTICS
300 200 100 70 50 30 20 10 7.0 5.0 3.0 1.0 2.0 td @ VBE(off) = 0.5 Vdc tr 1000 VCC = 3.0 V IC/IB = 10 TJ = 25C 700 500 300 200 t, TIME (ns) 100 70 50 30 20 10 1.0 tf ts
t, TIME (ns)
VCC = 3.0 V IC/IB = 10 IB1 = IB2 TJ = 25C 2.0 3.0 20 30 5.0 7.0 10 IC, COLLECTOR CURRENT (mA) 50 70 100
20 30 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (mA)
50 70
100
Figure 13. Turn-On Time
f T, CURRENT-GAIN BANDWIDTH PRODUCT (MHz)
Figure 14. Turn-Off Time
500 TJ = 25C f = 100 MHz 300 200 5.0 V C, CAPACITANCE (pF) VCE = 20 V
10 7.0 5.0 Cib Cob 3.0 2.0 TJ = 25C f = 1.0 MHz
100 70 50 0.5 0.7 1.0
2.0
3.0
5.0 7.0
10
20
30
50
1.0 0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
IC, COLLECTOR CURRENT (mA)
VR, REVERSE VOLTAGE (VOLTS)
Figure 15. Current-Gain -- Bandwidth Product
Figure 16. Capacitance
20 hie , INPUT IMPEDANCE (k ) 10 7.0 5.0 3.0 2.0 1.0 0.7 0.5 0.3 0.2 0.1 0.2 0.5 20 1.0 2.0 5.0 10 IC, COLLECTOR CURRENT (mA) 50 100 hoe, OUTPUT ADMITTANCE (m mhos) MPS3904 hfe 200 @ IC = 1.0 mA VCE = 10 Vdc f = 1.0 kHz TA = 25C
200 100 70 50 30 20 10 7.0 5.0 3.0 2.0 0.1 0.2 0.5 20 1.0 2.0 5.0 10 IC, COLLECTOR CURRENT (mA) 50 100 VCE = 10 Vdc f = 1.0 kHz TA = 25C MPS3904 hfe 200 @ IC = 1.0 mA
Figure 17. Input Impedance
Figure 18. Output Admittance
Motorola Small-Signal Transistors, FETs and Diodes Device Data
5
MPS3904
r(t) TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1.0 0.7 0.5 0.3 0.2 0.1 0.07 0.05 0.03 0.02 0.1 0.05 0.02 0.01 SINGLE PULSE P(pk) t1 t2 2.0 5.0 10 20 50 t, TIME (ms) 100 200 FIGURE 19A DUTY CYCLE, D = t1/t2 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 (SEE AN-569) ZJA(t) = r(t) * RJA TJ(pk) - TA = P(pk) ZJA(t) 5.0 k 10 k 20 k 50 k 100 k D = 0.5
0.2
0.01 0.01 0.02
0.05
0.1
0.2
0.5
1.0
500 1.0 k 2.0 k
Figure 19. Thermal Response
104 VCC = 30 Vdc IC, COLLECTOR CURRENT (nA) 103 102 101 100 10-1 10-2 - 40 - 20 ICBO AND ICEX @ VBE(off) = 3.0 Vdc ICEO
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
A train of periodical power pulses can be represented by the model as shown in Figure 19A. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 19 was calculated for various duty cycles. To find ZJA(t), multiply the value obtained from Figure 19 by the steady state value RJA. Example: The MPS3904 is dissipating 2.0 watts peak under the following conditions: t1 = 1.0 ms, t2 = 5.0 ms. (D = 0.2) Using Figure 19 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore T = r(t) x P(pk) x RJA = 0.22 x 2.0 x 200 = 88C. For more information, see AN-569.
0
+ 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160 TJ, JUNCTION TEMPERATURE (C)
Figure 19A.
400 IC, COLLECTOR CURRENT (mA) 200 100 60 40 20 10 6.0 4.0 2.0 1.0 ms
100 s 10 s 1.0 s
TC = 25C TA = 25C dc TJ = 150C CURRENT LIMIT THERMAL LIMIT SECOND BREAKDOWN LIMIT
dc
The safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve. The data of Figure 20 is based upon TJ(pk) = 150C; TC or TA is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided TJ(pk) 150C. TJ(pk) may be calculated from the data in Figure 19. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
4.0 6.0 8.0 10 20 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
40
Figure 20.
6
Motorola Small-Signal Transistors, FETs and Diodes Device Data
MPS3904
PACKAGE DIMENSIONS
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.022 0.016 0.019 0.045 0.055 0.095 0.105 0.015 0.020 0.500 --- 0.250 --- 0.080 0.105 --- 0.100 0.115 --- 0.135 --- MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.41 0.55 0.41 0.48 1.15 1.39 2.42 2.66 0.39 0.50 12.70 --- 6.35 --- 2.04 2.66 --- 2.54 2.93 --- 3.43 ---
A R P
SEATING PLANE
B
F
L K D
XX G H V
1
J
C N N
SECTION X-X
DIM A B C D F G H J K L N P R V
CASE 029-04 (TO-226AA) ISSUE AD
STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR
Motorola Small-Signal Transistors, FETs and Diodes Device Data
7
MPS3904
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488
MfaxTM: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, - US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 INTERNET: http://motorola.com/sps
8
MPS3904/D Motorola Small-Signal Transistors, FETs and Diodes Device Data


▲Up To Search▲   

 
Price & Availability of MPS3904

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X